Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ming-Hua Yang, Yi-Zhi Li, Cheng-Jian Zhu,* Yi Pan and Shan-Hui Liu

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.155$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(R, R)- N, N^{\prime}-Bis(5-chlorosalicylidene)-1,2-cyclohexanediamine

In the title compound \{systematic name: (R, R)-4,4'-dichloro-2,2'-[cyclohexane-1,2-diylbis(nitrilomethylidyne)]diphenol\}, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, there are two chiral C atoms and two intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The molecule lies on a twofold rotation axis. The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which link the molecules into one-dimensional helical chains along the b axis.

Comment

Chiral salen compounds are important chiral ligands widely used in asymmetric catalytic synthesis (Canail \& Sherrington, 1999; Jacobsen, 2000). The structure of chiral salen compounds has a crucial effect on enantioselectivity and activity in asymmetric catalytic reactions (Nicewicz et al., 2004; Yao et al., 2001). Our research is focused on asymmetric synthesis catalysed by chiral salen-metal complexes (Zhu et al., 2004). In order to study the relationship between the structures and properties of such salen compounds, we have synthesized the chiral ligand $(R, R)-N, N^{\prime}$-bis(5-chloro-salicylidene)-1,2-cyclohexanediamine, (I), and present its crystal structure here.

(I)

The molecular structure of (I) (Fig. 1) contains two chiral C atoms in (R, R)-diastereomeric form, the molecule lying on a twofold rotation axis. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 1, Table 1) are present.

The crystal packing is stabilized by intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), which link the molecules into one-dimensional helical chains along the b axis (Fig. 2).

Experimental

Under nitrogen, a mixture of (R, R)-1,2-cyclohexanediamine (342 mg , $3 \mathrm{mmol}), \quad \mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and 5-chloro-2-hydroxybenzaldehyde ($939 \mathrm{mg}, 6 \mathrm{mmol}$) in absolute ethanol (10 ml) was refluxed for about 12 h to yield a yellow precipitate. The product was collected by vacuum filtration and washed with ethanol. The crude solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and washed with water $(2 \times 10 \mathrm{ml})$ and brine (10 ml). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under vacuum and a yellow solid was isolated in 85% yield $(1.0 \mathrm{~g})$. Yellow single crystals of (I) suitable for X-ray analysis were grown from a solution in hexane by slow evaporation of the solvent at room temperature over a period of about a week. Spectroscopic analysis:

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) $1-x, 1-y, z$.]
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, δ, p.p.m.): $13.13(s, 2 \mathrm{H}), 8.10(s, 2 \mathrm{H})$, $7.10-7.14(d d, J=2.0$ and $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.04(d, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.75-6.78(d, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-3.26(m, 2 \mathrm{H}), 1.82-1.87(m, 4 \mathrm{H})$, 1.62-1.65 ($m, 2 \mathrm{H}$), 1.36-1.42 ($m, 2 \mathrm{H}$); IR (KBr, $v, \mathrm{~cm}^{-1}$): 3430, 2924, 2856, 1633, 1478, 1371, 1282, 1185, 1293, 1034, 977; analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ (\%): C 61.39, H 5.15, N 7.16; found: C 61.28, H 5.24, N 7.22 .

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=391.28$
Orthorhombic, $P 2_{1} 2_{1} 2$
$a=18.990$ (6) \AA
$b=5.829$ (2) \AA
$c=8.839$ (3) \AA
$V=978.4(6) \AA^{3}$
$Z=2$
$D_{x}=1.328 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.91, T_{\text {max }}=0.93$
5037 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.155$
$S=1.05$
1879 reflections
118 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 780
reflections
$\theta=2.5-25.0^{\circ}$
$\mu=0.35 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.30 \times 0.24 \times 0.22 \mathrm{~mm}$

1879 independent reflections
1554 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-21 \rightarrow 23$
$k=-5 \rightarrow 7$
$l=-10 \rightarrow 10$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0882 P)^{2}\right. \\
& +0.127 P \text {] } \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.34 \mathrm{e}^{\mathrm{\circ}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 732 \text { Friedel pairs } \\
& \text { Flack parameter }=0.13(15)
\end{aligned}
$$

Figure 2
The one-dimensional hydrogen-bonded helical chain in (I), viewed down the c axis.

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1B $\cdots \mathrm{N} 1$	0.85	2.03	$2.599(4)$	124
${\text { O1-H1 } B \cdots 1^{\mathrm{i}}}^{1}$	0.85	2.46	$2.903(5)$	114

Symmetry code: (i) $1-x, 1-y, z$.
All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and an $\mathrm{O}-\mathrm{H}$ distance of $0.85 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful to the National Natural Science Foundation of China for financial support (grant Nos. 20102002 and 20332050).

References

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Canail, L. \& Sherrington, D. C. (1999). Chem. Soc. Rev. 28, 85-93.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jacobsen, E. N. (2000). Acc. Chem. Res. 33, 421-431.
Nicewicz, D. A., Yates, C. M. \& Johnson, J. S. (2004). J. Org. Chem. 69, 65486555.

Yao, X. Q., Qiu, M., Lü, W., Chen, H. L. \& Zheng, Z. (2001). Tetrahedron: Asymmetry, 12, 197-204.
Zhu, C. J., Yang, M. H., Sun, J. T., Zhu, Y. H. \& Pan, Y. (2004). Synlett, 3, 465468.

