Received 4 November 2004

Online 27 November 2004

Accepted 11 November 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Hua Yang, Yi-Zhi Li, Cheng-Jian Zhu,* Yi Pan and Shan-Hui Liu

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.054 wR factor = 0.155 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*R*,*R*)-*N*,*N*'-Bis(5-chlorosalicylidene)-1,2-cyclohexanediamine

In the title compound {systematic name: (R,R)-4,4'-dichloro-2,2'-[cyclohexane-1,2-diylbis(nitrilomethylidyne)]diphenol}, $C_{20}H_{20}Cl_2N_2O_2$, there are two chiral C atoms and two intramolecular O-H···N hydrogen bonds. The molecule lies on a twofold rotation axis. The crystal structure is stabilized by intermolecular O-H···O hydrogen bonds, which link the molecules into one-dimensional helical chains along the *b* axis.

Comment

Chiral salen compounds are important chiral ligands widely used in asymmetric catalytic synthesis (Canail & Sherrington, 1999; Jacobsen, 2000). The structure of chiral salen compounds has a crucial effect on enantioselectivity and activity in asymmetric catalytic reactions (Nicewicz *et al.*, 2004; Yao *et al.*, 2001). Our research is focused on asymmetric synthesis catalysed by chiral salen-metal complexes (Zhu *et al.*, 2004). In order to study the relationship between the structures and properties of such salen compounds, we have synthesized the chiral ligand (R,R)-N,N'-bis(5-chloro-salicylidene)-1,2-cyclohexanediamine, (I), and present its crystal structure here.

The molecular structure of (I) (Fig. 1) contains two chiral C atoms in (R,R)-diastereomeric form, the molecule lying on a twofold rotation axis. Intramolecular O-H···N hydrogen bonds (Fig. 1, Table 1) are present.

The crystal packing is stabilized by intermolecular O– $H\cdots$ O hydrogen bonds (Table 1), which link the molecules into one-dimensional helical chains along the *b* axis (Fig. 2).

Experimental

Under nitrogen, a mixture of (R,R)-1,2-cyclohexanediamine (342 mg, 3 mmol), Na₂SO₄ (2 g) and 5-chloro-2-hydroxybenzaldehyde (939 mg, 6 mmol) in absolute ethanol (10 ml) was refluxed for about 12 h to yield a yellow precipitate. The product was collected by vacuum filtration and washed with ethanol. The crude solid was dissolved in CH₂Cl₂ (50 ml) and washed with water (2 × 10 ml) and brine (10 ml). After drying over Na₂SO₄, the solvent was removed under vacuum and a yellow solid was isolated in 85% yield (1.0 g). Yellow single crystals of (I) suitable for X-ray analysis were grown from a solution in hexane by slow evaporation of the solvent at room temperature over a period of about a week. Spectroscopic analysis:

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) 1 - x, 1 - y, z.]

¹H NMR (300 MHz, CDCl₃, δ , p.p.m.): 13.13 (*s*, 2H), 8.10 (*s*, 2H), 7.10–7.14 (*dd*, *J* = 2.0 and 8.8 Hz, 2H), 6.98–7.04 (*d*, *J* = 2.0 Hz, 2H), 6.75–6.78 (*d*, *J* = 8.8 Hz, 2H), 3.23–3.26 (*m*, 2H), 1.82–1.87 (*m*, 4H), 1.62–1.65 (*m*, 2H), 1.36–1.42 (*m*, 2H); IR (KBr, ν , cm⁻¹): 3430, 2924, 2856, 1633, 1478, 1371, 1282, 1185, 1293, 1034, 977; analysis calculated for C₂₀H₂₀Cl₂N₂O₂ (%): C 61.39, H 5.15, N 7.16; found: C 61.28, H 5.24, N 7.22.

Crystal data

 $C_{20}H_{20}Cl_2N_2O_2$ 1

 $M_r = 391.28$ 0

 Orthorhombic, $P2_12_12$ a = 18.990 (6) Å

 b = 5.829 (2) Å
 b = 5.829 (2) Å

 c = 8.839 (3) Å
 d = 2

 V = 978.4 (6) Å³
 d = 2

 $D_x = 1.328$ Mg m⁻³
 d = 1328 Mg m⁻³

 Data collection
 Bruker SMART APEX CCD areadetector diffractometer

 φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.91, T_{\max} = 0.93$ 5037 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.155$ S = 1.051879 reflections 118 parameters H-atom parameters constrained Mo $K\alpha$ radiation Cell parameters from 780 reflections $\theta = 2.5-25.0^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 293 (2) K Block, yellow $0.30 \times 0.24 \times 0.22 \text{ mm}$

1879 independent reflections 1554 reflections with $l > 2\sigma(l)$ $R_{int} = 0.058$ $\theta_{max} = 26.0^{\circ}$ $h = -21 \rightarrow 23$ $k = -5 \rightarrow 7$ $l = -10 \rightarrow 10$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0882P)^{2} + 0.127P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983),
with 732 Friedel pairs
Flack parameter = 0.13 (15)

The one-dimensional hydrogen-bonded helical chain in (I), viewed down the c axis.

Table 1Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1B \cdot \cdot \cdot N1$	0.85	2.03	2.599 (4)	124
$O1 - H1B \cdot \cdot \cdot O1^{i}$	0.85	2.46	2.903 (5)	114

Symmetry code: (i) 1 - x, 1 - y, z.

All H atoms were positioned geometrically and refined using a riding model, with C–H distances in the range 0.93–0.98 Å and an O–H distance of 0.85 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors are grateful to the National Natural Science Foundation of China for financial support (grant Nos. 20102002 and 20332050).

References

- Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Canail, L. & Sherrington, D. C. (1999). Chem. Soc. Rev. 28, 85-93.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jacobsen, E. N. (2000). Acc. Chem. Res. 33, 421-431.
- Nicewicz, D. A., Yates, C. M. & Johnson, J. S. (2004). J. Org. Chem. 69, 6548– 6555.
- Yao, X. Q., Qiu, M., Lü, W., Chen, H. L. & Zheng, Z. (2001). Tetrahedron: Asymmetry, 12, 197–204.
- Zhu, C. J., Yang, M. H., Sun, J. T., Zhu, Y. H. & Pan, Y. (2004). Synlett, 3, 465–468.